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Abstract. The abnormal haze event in NCP (North China Plain) and the decline in ozone levels in SC (Southern China) from 

21st January to 9th February 2020 have attracted public curiosity and scholarly attention during the COVID-19 lockdown. Most 10 
previous studies focused on the impact of atmospheric chemistry processes associated with anomalous weather elements in 

these cases, but fewer studies quantified the impact of various weather elements within the context of a specific weather pattern. 

To identify the weather patterns responsible for inducing this unexpected situation and to further quantify the importance of 

different meteorological factors during the haze event, two scenarios are employed. These scenarios compared observations to 

climatology averaged over the years 2015-2019 and the ‘Business As Usual’ (hereafter referred to as BAU) emission strength, 15 
using a novel structural SOM (Self-Organising Map) and ML (Machine Learning) models. The results reveal that the 

unexpected PM2.5 pollution and O3 decline from the climatology in NCP, North East China (NEC), and SC could be effectively 

explained by the presence of a double-centre high-pressure system. Moreover, the ML results provided a quantitative 

assessment of the importance of each meteorological factor in driving the predictions of PM2.5 and O3 under the specific weather 

system. These results indicate that temperature played the most crucial role in the haze event in NCP and NEC, as well as in 20 
the O3 decline in SC. This valuable information will ultimately contribute to our ability to predict air pollution under future 

emission scenarios and changing weather patterns that may be influenced by climate change.    

1 Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has lasted for three and half years and has led to over 6.9 million deaths 

globally as of June 2023 (Who, 2022). The Chinese government implemented strict lockdown measures nationwide during the 25 
first two months of 2020 to curb the spread of this pandemic (Le et al., 2020), which led to significant reductions in 

anthropogenic emissions, especially in the transportation sector (Xu et al., 2020; Wang et al., 2021; Liu et al., 2021). As a 

result, a decline not only in NO2 but also in PM2.5, PM10, SO2, and CO concentrations on a national scale was indicated by both 

satellite and ground-based measurements albeit with the negative consequence of enhancements in O3 concentrations (Shen et 

al., 2022; Liu et al., 2021; He et al., 2020). Contrary to the situation in other regions from 21st January to 9th February 2020, 30 
Northern China (NC) and Southwestern China (SC) experienced severe haze pollution and decreased O3 situations, 
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respectively (Le et al., 2020; Huang et al., 2021; Wang et al., 2020). This exceptional situation during the haze event in China 

thus lends itself to a large-scale ‘experiment’ to study the unusual phenomenon driven by atmospheric chemistry and 

meteorology.  

  PM2.5 and ground-level ozone (O3), especially in highly polluted regions, adversely affect human health (Lelieveld et al., 35 
2015), agriculture (Feng et al., 2015; Wang et al., 2007), and the Earth’s radiation budget (Liao et al., 2015; Dang and Liao, 

2019) thereby leading to premature mortality, decreases in crop yields, and altering the climate. Anthropogenic PM2.5, in 

addition to being generated by fossil fuels and biomass burning, is also produced through the reactions of inorganics (e.g. NO, 

NO2, SO2, NH3, etc.) and Volatile-Organic Compounds (VOCs)(Zheng et al., 2017). In contrast, O3 is not directly emitted but 

is formed through a series of photochemical reactions involving multiple precursors (e.g., carbon monoxide (CO), methane 40 
(CH4), VOCs, NO, NO2, etc.)(Ge et al., 2013). Apart from intense local primary emissions and secondary chemical formation, 

stagnant meteorological conditions and regional transport are two additional contributors to severe haze and O3 pollution events 

(Shen et al., 2020). Recently, a series of air quality regulations (Clean Air Plans, CAPs) released by the Chinese government 

have resulted in a notable decrease in anthropogenic emissions, leading to a substantial improvement in air quality due to 

reductions in PM2.5 concentrations, but a nationwide enhancement of O3 pollution in China (Shen et al., 2020; Li et al., 2019b). 45 
It is known that the impacts of meteorological conditions and atmospheric chemical processes could result in non-linear 

responses of PM2.5 and O3 to the decreases in their precursor concentrations (Li et al., 2019a; Li et al., 2020). However, the 

specific responses of air pollutants and atmospheric chemistry to emissions and meteorological conditions have not been 

clearly determined.  

  For the haze event in China introduced above, recent studies on the topic suggested that complex atmospheric chemistry 50 
processes triggered by emission reductions and meteorological conditions are responsible for the unexpected haze formation 

and O3 downward trend during the COVID-19 lockdown (Le et al., 2020; Fu et al., 2021). In detail, the substantial decrease in 

NO2 emissions during the COVID-19 lockdown resulted in an increase in O3 levels and nighttime NO3 radical formation, 

enhancing the atmospheric oxidation capacity (AOC) and facilitating the formation of secondary aerosols. Additionally, the 

presence of anomalous relative humidity promoted heterogeneous chemistry processes (Le et al., 2020; Huang et al., 2021; 55 
Ma et al., 2022). After the formation, more generated secondary aerosols were transported toward the in-situ measurement 

station in northern China (Lv et al., 2020). Meanwhile, some research pointed out that the high ambient humidity is also the 

key to the NC haze from the perspective of adjusting pH to control the formation efficiency of nitrate aerosol, which is one of 

the major species for NC haze (Chang et al., 2020; Sun et al., 2020). In addition to the influence of changes in chemical 

reactions, a physical mechanism known as aerosol-planetary boundary layer (PBL) interaction is also considered to have had 60 
a significant impact on the haze formation (Su et al., 2020). For O3, the decline in SC was attributable to the weakened 

photochemistry reactions due to the emission reductions in and the clean air masses’ dilution effect on the mass loadings of 

NOx and VOC (Fu et al., 2021; Liu et al., 2021). Overall, meteorological conditions always played a critical role: High relative 

humidity is the trigger of aerosol heterogeneous chemistry by adjusting the particle pH or providing a reaction medium. 

Meanwhile, the transport of the secondary aerosol or clean air masses and shallow PBL height are primarily driven by wind 65 
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and pressure, respectively. Importantly, the above weather elements are modulated synergistically by synoptic-scale weather 

patterns (SWPs) or large-scale atmospheric circulations.  

  Numerous studies have been conducted worldwide to explore the direct connections between SWPs and air quality Fields 

(Dayan and Levy, 2002; Demuzere et al., 2009; Pope et al., 2015; Hegarty et al., 2007; Bei et al., 2016; Jiang et al., 2017), 

indicating that good air quality conditions are often observed under cyclonic weather systems, while poor air quality is 70 
frequently associated with anticyclonic conditions. However, the relationship between air quality and SWPs can differ 

depending on location, time and pollutants (Jiang et al., 2017; Liao et al., 2017). The methods for SWPs employed in these 

studies can generally be categorized into three groups: subjective (manual), mixed (hybrid), and objective (automated) (Huth 

et al., 2008). Objective classification methods for SWPs are known for their speed, objectivity, and high reproducibility, often 

achieving 100%. On the other hand, manual approaches for SWPs have the advantage of allowing the user to control the 75 
selection of representative weather types (Lewis and Keim, 2015). Hybrid classification combines the strengths of both manual 

and automated techniques, where the users define the classification types, but the classification process itself is performed 

automatically (Frakes and Yarnal, 1997; Lewis and Keim, 2015; Huth et al., 2008). At present, the subjective method was used 

to investigate the contribution of six SWPs to PM2.5 pollution in Northwest China (Bei et al., 2016). While subjective 

approaches are suitable for analyzing short time series, they have significant limitations when applied to large datasets spanning 80 
extended periods of time (Chen et al., 2022). Hybrid classification for SWPs is more popular than the subjective one and was 

applied to explore the impact of SWPs on O3, PM2.5 and CO in NCP, Yangtze River Delta (YRD), and Eastern China, 

respectively (Zhang et al., 2013; Zhang et al., 2016; Han et al., 2018; Liao et al., 2017). As an objective classification and with 

its advantages, the self-organising map (SOM) algorithm has been used to identify the impact of different SWPs on O3 and 

PM2.5 in YRD and Sichuan Basin (SCB), respectively (Shu et al., 2020; Zhan et al., 2019). In addition, the principle component 85 
analysis T-mode, k-mean clustering and other clustering approaches (like the Lamb-Jenkinson method) also were adopted to 

quantify the impact of SWPs on O3 in NCP (Miao et al., 2017; Dong et al., 2020; Liu et al., 2019).  

      Based on the studies mentioned above, previous research on the drivers for unusual haze and O3 decline events has 

concentrated on the influence of atmospheric chemistry processes accompanied by the anomalous of one or two weather 

elements, but has not yet focused on the impact of weather elements in a comprehensive and synergistic way. Therefore, we 90 
here investigate the effect of anomalies in weather conditions with respect to climatology on PM2.5 and O3 concentrations 

during the haze event in the COVID-19 lockdown, specifically. To this end, we apply a novel SOM algorithm called structural 

SOM (S-SOM) to identify the most meaningful clustering number of weather patterns and compare it to other traditional SOM 

methods including ED-SOM and the SOM algorithm based on the Pearson correlation coefficient (hereafter named COR-

SOM). Furthermore, after determining the weather patterns, we evaluate the contribution of SWPs to PM2.5 and O3 changes 95 
during the COVID-19 lockdown in China. At last, to better understand what role each meteorological factor played in the 

PM2.5 and O3 pollution during this period, the SHapley Additive exPlanations (SHAP) approach is used to evaluate their 

relative importance for the predictions of the Machine Learning model. The knowledge gained ultimately will help to predict 

air pollution under future emission scenarios and weather patterns potentially altered by climate change. 
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 2 Method 100 

2.1 Observational and model dataset sources 

The hourly observation dataset from 2015 to 2020, including two air pollutants (PM2.5 and O3) and six meteorological factors 

(Pressure: P, Precipitation: Precip, Temperature: Temp, Relative Humidity: RH, Wind Speed: WS, Wind Direction: WD), was 

divided into two parts: training dataset and test dataset, used to build a prediction model based on Machine Learning. Air 

pollutant and meteorological station datasets were downloaded from the National Environmental Monitoring Center 105 
(http://www.cnemc.cn) and the National Meteorological Science Data repository (https://data.cma.cn). To better understand 

the climatology impact on air pollutants, 367 surface measurement stations across China are divided into eight different regions 

(including NCP: North China Plain; IM: Inner Mongolia; NEC: North Eastern China; YRD: Yangtze River Delta; CS: Central 

South; SC: Southern Coast; TP: Tibet Plateau; NWC: North Western China) based on different typic climate characteristics 

(climate classification scheme link: https://www.resdc.cn/data.aspx?DATAID=243, Fig. 1). Hourly surface ERA5 data, 110 
including Mean Sea Level Pressure (MSLP) (at 14:00 local time per day), and total Solar Radiation (SR), were retrieved from 

the European Centre for Medium-Range Weather Forecasts (ECMWF). 

 
Figure 1: The spatial distribution of air quality measurement stations in different climate regions (circles represent surface 
measurement stations, colors indicate different climate zones. NCP: North China Plain; IM: Inner Mongolia; NEC: North Eastern 115 
China; YRD: Yangtze River Delta; CS: Central South; SC: Southern Coast; TP: Tibet Plateau; NWC: North Western China) 
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2.2 Structural SOM algorithm (S-SOM) 

For the SOM algorithm, it involves iterative learning processes that progressively update the nodes in the output map until 

they converge to a stable solution. During each learning step, the SOM algorithm selects an input vector in a random way and 120 
then searches for a node that best matches that particular vector. Traditionally, the Euclidean Distance (ED) in the SOM 

algorithm is often used as a criterion to search for the winning node that is closest to an input vector. ED is very popular in the 

SOM algorithm but with significant shortcomings when applied to compare structured inputs with temporal or spatial orders. 

As a result, the limitations of ED become particularly significant in climatology research, where the data are often with a 

spatial and temporal structure, which might result in the degradation of the spatial correlations between air pressure patterns 125 
in weather maps (Doan et al., 2021). 

      The S-SOM algorithm is executed following the procedure proposed by Kohoen and is widely used in many studies 

(Kohonen, 1982). To begin, an S-SOM is initialized by configuring the SOM node and determining the number of training 

iterations. The training process involves three key steps: 

1. Selecting an input vector. 130 
2. Identifying the best matching unit in the SOM for the input vector. 

3. Updating the weight vectors of the SOM nodes using specific parameters. 

The only difference between the traditional SOM and S-SOM is that the similarity index (S-SIM) rather than ED is used to 

compare the similarity between vectors. S-SOM was first proposed by Wang et al. (2004) and can be expressed in the following 

equation. 135 
S − SOM(𝑥, 𝑦) = +𝑙(𝑥, 𝑦)! × 𝑐(𝑥, 𝑦)" × 𝑠(𝑥, 𝑦)#0                 (1) 

Here, 𝑥, 𝑦 are two vectors, and 𝑙, 𝑐, 𝑠 are three comparison measurements representing luminance, contrast and structure, 

respectively. The three comparison functions are as follows: 

𝑙(𝑥, 𝑦) = $%!%"&'#
%!$&%"$&'#

                                                                   (2) 

𝑐(𝑥, 𝑦) = $(!("&'$
(!$&("$&'$

                                                                   (3) 140 

𝑠(𝑥, 𝑦) = (!"&'%
(!("&'%

                                                                     (4) 

Here, the average and standard deviation values are represented by 𝜇, 𝜎, respectively.  The parameters 𝑐), 𝑐$, 𝑐* are used to 

stabilize division operations involving a weak denominator. The luminance, contrast, and structure in the S-SOM formula are 

three elements of human perception. Luminance assesses the similarity in brightness values between images. Contrast 

quantifies the similarity in illumination variability among images. Lastly, the structure measures the correlation in spatial 145 
interdependencies between images, reflecting how the spatial elements of the images are related to each other (Wang and 
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Bovik, 2009). Here, we can set the values of c1, c2, and c3 to 0, and the weights α, β, and γ to 1 to simplify the model (Doan 

et al., 2021). The final expression shows as: 

S − SOM(𝑥, 𝑦) =
($%!,).(!"/

.%!$&%"$/.(!$&("$/
                                              (5) 

As the function shows, the S-SOM ranges from -1 to 1. A value of 1 indicates complete similarity, while a value of -1 indicates 150 
complete dissimilarity. S-SOM offers robust, user-friendly, and comprehensible alternatives to the conventional ED approach, 

particularly when dealing with datasets with spatial and temporal order (Wang and Bovik, 2009). 

2.3 Machine learning model 

The impact of meteorological factors on the variation of air pollutant concentrations is typically determined via chemical 

transport models. However, these model predictions are associated with substantial uncertainty since they rely on the correct 155 
quantification of changes in the emission inventory of each city under multi-faceted anthropogenic air pollution interventions 

(e.g., clean air plans, and COVID-19 lockdown measures). Here, a Gradient Boosting Machine (GBM) model was trained with 

observations of meteorological factors, with the GBM being able to capture the location-specific characteristics and thus 

suitable for the prediction of air pollutant concentrations attributable to the impact of meteorology in different cities across 

China. Observations of meteorological factors, together with time variables from 2015 to 2019, are considered as the training 160 
dataset to predict the concentrations of PM2.5 and O3 in China. The meteorological factors are listed as follows: P, Precip, Temp, 

RH, WS, and WD. The time variables include Julian Day (JD), Day of Week (DOW), Holidays, and the Chinese New Year 

(CNY) days in each year. After selecting the best ML model under cross-validation, a ML experiment was designed to make 

a prediction of PM2.5 and O3 in the first two months of 2020. 

2.4 Shapley Additive ExPlanation (SHAP) Method 165 

Quantifying the importance of input features of the ML model is as vital as the overall accuracy of the prediction itself. 

However, interpreting the higher accuracy achieved by ensemble or ML models on certain datasets can be a challenging task.  

To deal with this contradiction between higher accuracy and non-interpretability, SHAP, a game theory approach, is applied 

to calculate the importance value for each specific independent feature. In brief, the importance value of each feature is 

attributed to the difference in one prediction output with one feature versus the prediction output without this corresponding 170 
feature. Using this approach, the importance value for each independent variable can be calculated in each prediction model. 

For each predicted model with n variables in one sample (𝑥0) and the predicted output 𝑓(𝑥0), the equation of the prediction 

function is described as follows:  

𝑓(𝑥0) 	= 	𝐸1(𝑓, 𝑥) 	+	∑ 𝐸2(𝑓, 𝑥0)3
24)                                     (6) 

where 𝑥0  is the input with variable 𝑚 in the prediction model 𝑓generating the SHAP value of 𝐸2(𝑓, 𝑥0). 𝐸1(𝑓, 𝑥) is the 175 
expected value for the prediction model over the whole dataset. 
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3 Results 

3.1 Spatial variations of air pollutant and meteorology in climatology 

The spatial distribution of the fractional differences in air pollutant concentrations during the haze event from 21st Jan to 9th  

Feb 2020, calculated between mean values during the event in 2020 and the values averaged over the same period from 2015 180 
to 2019, for all six air pollutants are shown in Fig. 2. Half of the climate regions, including YRD, CS, SC, and TP, showed 

different magnitudes in decreases (increases) (Table 1) from the climatology for PM2.5, PM10, NO2, SO2, and CO (O3), 

primarily attributed to the significant anthropogenic emission reduction during the COVID-19 lockdown (Nie et al., 2021; 

Wang et al., 2022; Shen et al., 2022). However, contrary to expectations, PM2.5 concentrations did not drop as anticipated at 

the beginning of the lockdown in NCP, IM, NEC and NWC. Instead, these regions experienced an unexpected increase of 185 
8.6%, 31.8%, 22.3%, and 2% compared to climatology during the same period, respectively. In addition, O3 showed an 

unexpected drop of -0.8% in SC when compared to climatology during the same period. Our recent work also found a -0.9% 

decline in O3 compared to a climatology averaged over the years 2015-2019 during the COVID-19 lockdown across China 

(Shen et al., 2022). As a fractional difference from climatology, the spatial distribution of the key meteorological variables 

RH, P, Precip, Temp, and WS are shown in Fig. 3. Generally, positive RH and negative WS anomalies are always accompanied 190 
by strong regional elevation of PM2.5 in NCP, NEC, IM, and NWC. Positive P anomalies coupled with increased PM2.5 

demonstrate the most prominent regional characteristics in NEC. In SC, the most noticeable features were observed as a 

combination of hotspot Precip anomalies and decreased O3 levels. Overall, the regional characteristics of PM2.5 and O3 all have 

a close relationship with different meteorological anomalies, which are usually controlled by the regionally prevailing SWP. 

 195 
Figure 2: The spatial distributions of fractional differences between mean values during the haze event in 2020 and the climatology 
over the same period of the years 2015-2019 for six air pollutants (including PM2.5, PM10, NO2, O3, SO2, and CO). 
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Table 1. The climate characteristics and mean averages of six air pollutants in different regions across China. 200 
Climate 
zone 

Number 
of cities 

Climate 
characteristics PM2.5 PM10 O3 NO2 SO2 CO 

NCP 86 
Semi-humid warm 

temperate climate 
8.6% -17.6% 39.3% -43.4% -66.9% -23% 

IM 17 
Semi-arid mid-

temperate climate 
31.8% -10.7% 15% -9.4% -40.2% -2.6% 

NEC 31 

Cold temperate 

climate, semi-humid, 

mid-temperate 

climate 

22.3% 0.7% 26.4% -24.2% -45.8% -10.3% 

YRD 67 
Humid, north 

subtropical climate 
-29.7% -41.7% 32.4% -54.3% -60.9% -24.6% 

CS 68 
Humid, mid-

subtropical climate -41.4% -50.9% 11.5% -53.2% -56.7% -25.2% 

SC 42 
South subtropical 

climate 
-40.2% -45.2% -0.8% -51.8% -44.3% -24.8% 

TP 9 Plateau climate -48% -61.9% 16% -27.3% -40.1% -26.4% 

NWC 28 
Arid, mid-arid, mid-

temperate climate 
2% -34.1% 28.7% -14.5% -49.6% -12.3% 
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Figure 3: The spatial distributions of differences between mean values during the haze event in 2020 and the climatology over the 
same period of the years 2015-2019 for meteorological factors (including Relative Humidity, Pressure, Precipitation, Temperature, 205 
and Wind Speed). 

3.2 Identification of the SWP during the unexpected haze event 

To identify which SWP can regionally induce an unexpected PM2.5 increase and O3 reduction compared to climatology, three 

different SOM methods were employed to identify different types of SWPs (from 2 to 8) by using MSLP data in the first two 

months from 2015 to 2020 over China. Fig. 4 shows MSLP patterns identified by S-SOM, COR-SOM, and ED-SOM running 210 
three nodes, respectively. Taking this three-node analysis as an example, we can find that the three SWPs identified by S-SOM 

(Figs. 4a, 4b, and 4c) are clearly distinct from each other. On the other hand, ED-SOM (Figs. 4d and 4e) and COR-SOM 

(Figs. 4g and 4h) both classify two similar SWPs characterised by high-pressure systems over Siberia, thus resulting in a 

failure of clustering. This interpretation is supported by the result of clustering number distributions for the three-node SWPs 

(Fig. 5d). It should be noted that cluster numbers do not necessarily correspond to the same pattern between S- / ED-/ COR-215 
SOM. Here, it is found that S-SOM results are in a more ‘ordered’ clustering of nodes, where a prominent node (62.9%) is 

accompanied by two non-dominant nodes (7.5% and 29.5%). On the other hand, both ED-SOM and COR-SOM exhibit 

relatively similar cluster sizes with a percentage of 27%, 35.1%, and 37.9% for ED-SOM and 40.7%, 34.6%, and 24.7% for 

COR-SOM, highlighting the prevalence of a more ‘flat’ clustering pattern. It can be concluded that the better classification 

method for three-node SWPs is S-SOM with an ‘ordered’ clustering number distribution accompanied by a prominent node 220 
(Doan et al., 2021). This consistent finding is also observed in other cases (e.g. node numbers smaller or greater than 3,  
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Figure 4: Spatial distributions of three weather patterns for MSLP (Mean Sea Level Pressure) identified by S-SOM (a, b and c), 
COR-SOM (d, e, and f), and ED-SOM (g, h, and i) during the first two months from 2015 to 2020.  
 225 

 
Figure 5: Cluster size distributions identified by S-SOM (inner ring), COR-SOM (middle ring) and ED-SOM (outer ring) over the 
years 2015-2020 (d) and days in each year (a: S-SOM; b: COR-SOM; c: ED-SOM).  
 

Fig. S1-S12). Then, we make a further comparison of the node number distribution of S-SOM (Fig. 5a), ED-SOM (Fig. 5b), 230 
and COR-SOM (Fig. 5c) in each year and find that S-SOM always has a prominent node with a value of more than 50% 

(2015:50%, 2016: 85%, 2017: 64%, 2018: 81%, 2019: 63%, and 2020: 55%) and the cluster sizes for ED-SOM and COR-

https://doi.org/10.5194/egusphere-2023-2425
Preprint. Discussion started: 4 December 2023
c© Author(s) 2023. CC BY 4.0 License.



11 
 

SOM are close to each other as well, which is consistent with a recent study indicating a better performance of S-SOM (Doan 

et al., 2021). Therefore, in addition to the algorithmic advantages, the characteristics of ‘ordered’ clustering nodes reinforce 

the superiority of the S-SOM approach.  235 
      In terms of structure characteristics of clustering number distribution for S-SOM, three-node SWPs (Fig. 4) and seven-

node SWPs (Fig. S13) were regarded as the optimal numbers of SWPs after checking the clustering number distribution for 

each run. From the top panel of Fig. 4, three types of SWPs identified by S-SOM demonstrate that NCP, YRD, NEC and NWC 

are under the control or influence of different high-pressure systems. For seven-node SWPs identified by S-SOM, even though 

the high-pressure system varies in numbers and locations, some patterns (Fig. S13d and Fig. S13e) still have a relatively high 240 
similarity, which might be attributed to the over-splitting or a too short dataset to capture the full climatology. Overall, the 

result of three-node SWPs of S-SOM is thus identified as the best solution to study the haze event in China in further detail. 

3.3 Impact of weather elements on PM2.5 and O3 under the SWP  

To better understand the regional influence of different SWPs on PM2.5 and O3 concentration levels, NCP, NEC, and SC, which 

have higher/lower than expected concentrations for PM2.5/O3 and have more measurement stations as well, were selected as 245 
the research domains, respectively. To investigate the cause of the unexpected PM2.5 and O3 variations with respect to 

climatology, a comparison of identified three-node SWPs is made between the days of 2020 and 2015-2019. As is shown in 

Fig. 6 and as detailed in Figs. 7-9, pattern-I in 2020 (Fig. 6d) shows a North Coastal high-pressure circulation system, located 

in the Yellow Sea, which is enhanced from that in 2015-2019 (Fig. 6a) and influences the NCP and NEC regions (see Figs. 

7a,d-f and 8a,d-f) more strongly from the southeast direction with a generally warmer and, in the case of NEC, also faster 250 
airflow. The double-centre high-pressure system in pattern-II is strengthened in 2020 (Fig. 6e) and located in the region of 

Mongolia and the Bohai Sea in China compared to 2015-2019 (Fig. 6b). This brings along a more stagnant, that is low-speed 

and cold, but in addition extremely wet, northern airflow controlling the NCP region (Figs. 7a,d-f) and a moderately wetter 

airflow dominating the NEC region (Figs. 8a,d-f). Pattern-III, on the other hand, shows a much weakened Siberian high and 

a missing China north coastal high in 2020 (Fig. 6f), when compared to a pattern exhibiting two high-pressure centres during 255 
the 2015-2019 reference period (Fig. 6c). This leads to a generally warmer, slightly faster, and more humid airflow to the NCP 

(Figs. 7a,d-f) and NEC (Figs. 8a,d-f) regions. For SC, which is always located at the most southern part of the observed high-

pressure centres (Fig. 6), and for all three patterns, only small changes are seen in 2020 compared to the 2015-2019 time period 

with a more easterly component in winds (Figs. 9a-c), leading to slightly warmer and (except for pattern III) moister airflow 

(Figs. 9 d-f).        260 
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Figure 6: Comparison of the three weather patterns between days in 2020 (d, e, and f) and 2015-2019 (a, b, and c), respectively.  
 

 265 
Figure 7: Comparisons of different weather factors (including Wind Speed, Wind Direction, Temperature, Relative Humidity, 
Pressure, and Total Radiation) between days in 2020 (red rings and solid whisker-boxes) and in 2015-2019 (black rings and hollow 
whisker-boxes) for the three weather patterns in NCP.  
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 270 
Figure 8: Comparisons of different weather factors (including Wind Speed, Wind Direction, Temperature, Relative Humidity, 
Pressure, and Total Radiation) between days in 2020 (red rings and solid whisker-boxes) and in 2015-2019 (black rings and hollow 
whisker-boxes) for the three weather patterns in NEC.  
 

 275 
Figure 9: Comparisons of different weather factors (including Wind Speed, Wind Direction, Temperature, Relative Humidity, 
Pressure, and Total Radiation) between days in 2020 (red rings and solid whisker-boxes) and in 2015-2019 (black rings and hollow 
whisker-boxes) for the three weather patterns in SC.  
 
 280 
       We now turn to the discussion of the observed distributions of PM2.5 and O3 (Fig. 10) aggregated over the three SWPs and 

the regions NCP, NEC, and SC for the 2020 and the 2015-2019 time periods, respectively. For PM2.5 in NCP (Fig. 10a), the 

mean values in pattern-I, II, and III in 2015-2019 all remained at high pollution levels with a value of 96.4, 92.6, and 87.7 

µg/m3, respectively. In contrast, due to the anthropogenic emissions reductions during the lockdown period in 2020, the PM2.5 

mean values for patterns I and III decreased to 68.8 and 59.8 µg/m3 even coupled with a positive RH climatological anomaly 285 
(Fig. 7e: 2% and 10%), which could be conducive to generating additional PM2.5 generally. Unlike pattern-I and III, the PM2.5 

mean value in pattern-II 2020 surprisingly keeps at an equivalent level (92.5 µg/m3) to pattern-II in 2015-2019 (92.6 µg/m3) 

under a weather condition of a combination of the greatest RH anomaly (Fig. 7e: 17%) and a negative WS anomaly (Fig. 7f: 
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-0.3 m/s), which offsets the contribution from the emissions reduction in NCP. For O3 in NCP (Fig. 10d), the pattern-I and -

III in 2020 exhibit greater temperature anomalies (Fig. 7d: 2.7 °C and 2.9 °C; consistent with higher total radiation levels, see 290 
Fig. 7h) and thus facilitate additional O3 generation (20 µg/m3 and 13 µg/m3). The pattern-II in 2020 with a negative 

temperature anomaly (-0.1 °C; consistent with lower total radiation levels, see Fig. 7h) is leading to a more moderate O3 

increase (3 µg/m3).  

 
Figure 10: Comparisons of PM2.5 (green colour) and O3 (red colour) between days in 2020 (filled whisker-boxes) and in 2015-2019 295 
(hollow whisker-boxes) for the three weather patterns in NCP (a and d), NEC (b and e), and SC (c and f).  
 

      In the NEC region, the maximum PM2.5 increase (15 µg/m3) occurred under the influence of pattern-II in 2020(Fig. 10b), 

with a negative wind speed anomaly (Fig. 8f: -0.3 m/s) when compared to the same pattern in 2015-2019, indicating the 

meteorological effect acts in the opposite way to the emission reductions during the COVID-19 lockdown period. Whilst, 300 
without an offset effect from the unfavourable meteorological conditions, mean values of PM2.5 for pattern-I and III in 2020 

decreased by 5 µg/m3 and 8 µg/m3, respectively. For O3 (Fig. 10e), unlike a negative temperature anomaly (Fig. 8d: -1.3 °C) 

in SWP-II, both higher O3 increases in SWP-I (11 µg/m3) and III (11 µg/m3) than that in SWP-II (2 µg/m3) are driven by 

positive temperature anomalies (Fig. 8d: 2 °C and 4.4 °C).  

      In the SC region, without an extreme weather element anomaly facilitating additional PM2.5 production, PM2.5 mean values 305 
for all three SWPs in 2020 are at a lower level than in 2015-2019 (Fig. 10c), attributable to the emissions reductions during 

the COVID-19 lockdown. Higher precipitation levels in 2020 than during the 2015-2019 period also helped reduce PM2.5 

levels (see Figs. 3c and S14). For O3 (Fig. 10f), a negative RH anomaly (Fig. 9e) for SWP-III in 2020 has led to the greatest 

O3 elevation for this region. On the other hand, O3 in pattern-I is found to remain at similar levels during both time periods 

since no significant differences in weather patterns are found. Finally, a positive wind speed anomaly (Fig. 9f: 0.21m/s) is 310 
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conducive to an unusual O3 decline (-0.5 µg/m3) in SWP-II in 2020 when compared to 2015-2019, which is contrary to the O3 

situation under the effect of all other SWPs discussed above.  

      Overall, we found that the unexpected PM2.5 pollution increase in NCP and NEC and an O3 decline in SC occur 

simultaneously only during SWP-II, which is equivalent to the situation found in the observations during the haze event. When 

we further investigate the calendar occurrences of the three different SWPs (Fig. S15), it is indeed found that 70% of haze 315 
days were associated with SWP-II. This finding thus indicates that SWP-II can be regarded as the representative weather 

pattern which best explains the cause of the unexpected haze and O3 decline events. 

3.4 Predominant meteorological factors for PM2.5 and O3 pollution  

After identifying which SWP could control the impact of each weather element on PM2.5 and O3 levels as observed during the 

haze event in 2020, we further use machine learning coupled with the SHAP approach to quantify the impact of each weather 320 
element on the PM2.5 and O3 under ‘Business As Usual’ (hereafter referred to as BAU) emission strength scenario during the 

haze event in 2020. This BAU scenario thereby represents a counterfactual to the situation under the Covid-19 lockdown which 

led to significant emission reductions. In our previous study, the GBM model was applied to train daily data over 2015-2019 

and predict six air pollutants including PM2.5 and O3 over the first three months of 2020 in 367 cities across China (Shen et al., 

2022). The good performance of the GBM model was measured by achieving relatively high Pearson Correlation Coefficients 325 
(PCC) and lower root-mean-squared errors (RMSE) for the final predictions of PM2.5 and O3 (the details can be found in the 

supplementary materials). Fig. 11 (a), (d), and (g) and Fig. S16 show the time series results in the first two months for PM2.5 

and O3 between the observation and prediction in NCP, NEC, and SC respectively. We find that the predictions agree generally 

well with the observations with reasonably high PCCs (NCP: 0.7, NEC: 0.6, SC: 0.8), indicating the good performance of the 

GBM model. Note that these predictions might be with high Root Mean Square Errors (RMSEs) due to the input being the 330 
BAU emissions instead of the lockdown emission reduction. In a second step, the SHAP module coupled to the GBM model 

was run to quantify the importance of the input variables during the haze event in 2020 (Fig. 11 (b), (e), and (h)). On average, 

in the BAU emission strength scenario, the SHAP value of time variables, including CNY, DOW, Holiday, and Julian Day, 

have no or negative impacts on PM2.5 and O3 (Fig.11(c), (f), and (i)). For meteorological elements that enhanced the production 

of PM2.5, temperature ranked first among the six meteorological elements during the haze event, followed by RH and pressure 335 
in NCP, versus RH and WS in NEC respectively. In contrast, RH in SC is the primary meteorological variable that facilitated 

the generation of O3. Meanwhile, temperature and pressure play the opposite role to RH, leading to a reduction of O3 

surprisingly. When we investigate the observed weather elements in 2020 against that averaged over 2015-2019, we can find 

that NCP and NEC were both under the control of SWP-II with lower temperatures and a higher RH, which facilitate the 

formation of PM2.5. Meanwhile, the SC region was influenced by the SWP-II with higher temperatures, higher RH and higher 340 
WS weather conditions with the latter being favourable to the transport of air masses, resulting in a decline of O3. Overall, we 

could not only find that the impact of weather elements on PM2.5 and O3 in the prediction scenario is consistent with that in 

climatology, but also can conclude that temperature plays a key role in such an impact.  
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Figure 11: Time series comparisons between observations (black dot line) and predictions (red triangle line) combined with the 345 
contributions from the input variables (colourful bar) to the PM2.5 and O3 changes in NCP (a and b), NEC (d and e), and SC (g and 

h) respectively. Note that the whisker-box plots represent the mean importance of the input variables during the prediction in NCP 

(c), NEC (f), and SC (i) respectively 

4 Conclusion 

At the beginning of the COVID-19 pandemic, China suspended almost all non-essential human activities. However, serious 350 
haze pollution still occurred in North China during this period, triggering extensive investigations. On the other hand, whilst 

O3 concentrations were increasing across almost all of China due to the shift in the chemical regime, the SC region exhibited 

a decrease in O3. To further understand the role of meteorology in regulating air pollution during this period, we investigated 

in more detail the role of synoptic-scale weather patterns in driving the meteorology in these regions of China. To this end, we 

first determined the optimal approach for identifying synoptic-scale weather patterns out of three self-organising map methods. 355 
With the S-SOM method yielding the most optimal results, we then analysed the variation of each meteorological factor under 

the control of the weather type that produces anomalous PM2.5 concentrations in the NCP and NEC, and anomalous O3 
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concentrations in SC, and finally quantify the importance of each meteorological factor assuming a BAU scenario through a 

machine-learning model coupled with a SHAP module. 

The large-scale double centre high-pressure system was identified by the optimal S-SOM method, which is with low-speed-360 
cold-extremely wet-northern airflow controlling the NCP region, with low-speed-warm-wet airflow from the Bohai Sea 

dominating the NEC region, and with warmer air masses covering the SC region simultaneously. Whilst, the above weather 

elements anomalies controlled by the large-scale high pressure could well explain the unexpected PM2.5 pollution and O3 

decline in climatology in NCP, NEC, and SC respectively.  

  Moreover, the SHAP results indicate that in the BAU scenario, the time series trend of PM2.5 and O3 have a high similarity 365 
with that of observations, indicating a good performance of the prediction model (despite the differing emissions). The SHAP 

results stress the impact of meteorological conditions on PM2.5 and O3 and further quantify the importance of each weather 

element under the specific weather system,  revealing the most important role that temperature played in PM2.5 pollution in 

NCP and NEC, and in O3 decline in SC, respectively.  

Overall, this study provides a potential way to understand the synergistic effects of various meteorological factors in reducing 370 
pollution and to quantify the importance of each weather element as well. As a result, the provision of information on what 

role each weather element plays in unexpected air pollution cases can help policymakers to implement air pollution control 

strategies. However, our work will have to be expanded further and add more related meteorological factors to our model to 

improve its performance. In fact, more studies should focus on the topic of understanding the impact of meteorology on 

different air pollutants in particular due to weather conditions in a changing climate.    375 
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